Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов

Наибольшие напряжения изгиба возникают в точках k и k/, наиболее удаленных от нейтральной оси (рис. 3), .

Расчет балок переменного сечения. Подбор сечений балок равного сопротивления.

Вид балки в фасаде и плане показан на Рис.1. Такое очертание балки получается, если учитывать ее прочность только по отношению к нормальным напряжениям; ширина в сечении В обращается в нуль.

Покажем это на примере, разобранном выше. Определим прогиб балки равного сопротивления, защемленной одним концом, нагруженной на другом конце силой Р и имеющей постоянную высоту.

Расчет балки на упругом основании

Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р.

Разрезав балку сечением в точке О справа от силы Р и рассматривая правую часть балки, видим, что поперечная сита в этом сечении равна реакции основания, действующей на правую половину балки со знаком минус; так как реакция направлена вверх (для правой половины) и вся реакция основания равна Р, значит, поперечная сила в сечении при х = 0 равна .

Энергетические методы расчета деформаций. Постановка задачи .Кроме рассмотренных способов вычисления прогибов и углов поворота сечений балок существует более общий метод, пригодный для определения деформаций любых упругих конструкций. Он основан на применении закона сохранения энергии.

Вычисление потенциальной энергии. При вычислении потенциальной энергии будем предполагать, что деформации не только материала, но и всей конструкции, следуя закону Гука, пропорциональны нагрузкам, т. е. линейно с ними связаны и растут постепенно вместе с ними.

«Соответствие» заключается в том, что речь идет о перемещении того сечения, где приложена рассматриваемая сила, причем о таком перемещении, что произведение его на эту силу дает нам величину работы; для сосредоточенной силы это будет линейное перемещение по направлению действия силы — прогиб, удлинение; для пары сил — это угол поворота сечения по направлению действия пары.

Теорема Кастильяно. Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации.

Предположим, что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется (Рис.2, положение III), и прогибы ее в точках 1, 2, 3 будут .

Предыдущий вывод был сделан для балки, но совершенно ясно, что его можно повторить для любой конструкции, деформации которой следуют закону Гука.

Теоремы о взаимности работ и Максвелла — Мора. Пользуясь понятием о потенциальной энергии, можно установить следующую зависимость между деформациями в различных сечениях балки.

Теорема Максвелла—Мора. Прогиб балки в точке приложения сосредоточенной силы Р равен: .

Аналогично, производная изгибающего момента М (х) по паре сил численно представляет собой изгибающий момент от пары с моментом, равным единице, приложенной в том же сечении, где имеется пара , и направленной в ту же сторону.

Наш соотечественник А. Н. Верещагин в 1924 г. предложил упрощение вычислений.

Расчет статически неопределимых балок. Способ сравнения деформаций

Действительно, добавочная реакция и соответствующее ей добавочное опорное закрепление являются «лишними» только с точки зрения необходимости этих закреплений для равновесия балки как жесткого целого.

Совместные действия изгиба и кручения призматического стержня

Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).



Рис.1. Расчетная схема изогнутого и скрученного вала

Искусство Италии XVIII века Особенности экономики, политики и культурного развития европейских стран в период углубившегося кризиса абсолютизма и укрепления капиталистического уклада. Сосуществование двух идеологий — деградирующего феодального дворянства и стремящегося к власти буржуазного класса. Отражение в искусстве буржуазных и феодально-аристократических интересов. Противоречие и борьба стилистических концепций классицизма, рококо и реализма.

Примем следующий порядок расчета.

1. Разлагаем все внешние силы на составляющие

P1x, P2x,..., Pnx и P1y, P2y,..., Pny.

2. Строим эпюры изгибающих моментов My и My. от этих групп сил.

У кругового и кольцевого поперечного сечений все центральные оси главные, поэтому косого изгиба у вала вообще не может быть, следовательно, нет смысла в каждом сечении иметь два изгибающих момента Mx, и My а целесообразно их заменить результирующим (суммарным) изгибающим моментом (рис. 2)

,

который вызывает прямой изгиб в плоскости его действия относительно нейтральной оси п—п, перпендикулярной вектору Мизг. Эпюра суммарного момента имеет пространственное очертание и поэтому неудобна для построения и анализа. Поскольку все направления у круга с точки зрения прочности равноценны, то обычно эпюру Мизг спрямляют, помещая все ординаты в одну (например, вертикальную) плоскость. Обратим внимание на то, что центральный участок этой эпюры является нелинейным.



Рис.2. Формирование результирующего изгибающего момента Если пренебречь силами сопротивления F2 и представить массу тела в виде m = m0 ƒ (t), где m0 — масса точки вначале, т. е. при t = 0; ƒ (0) = 1, то это уравнение примет вид

где a — известная функция, зависящая как от времени t, так и от расстояния.

 В настоящее время функцию ƒ (t) в большинстве случаев принимают при линейном законе изменения массы в виде

ƒ (t)= 1 — αt,

а при показательном законе изменения массы в виде

ƒ (t)=e-αt.

Таким образом, массу движущейся точки выражают в двух видах:

m(t)= m0(1 — αt),

m(t)= m0 e-αt.

В этом случае реактивная сила Ф = υrm будет равна

Ф(1)= - α m0υr

либо

Ф(2)= - α m0 e-αt υr.


Лучшие игровые слоты без регистрации http://novyeigrovyeavtomaty.men/ с начальным счетом в 200$ онлайн | Игровые демо слоты онлайн http://igrovyeapparatyigrat.win/ с большим бонусом