http://spmipk.info/ срок действия удостоверения по охране труда форма удостоверения.

Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов

Выведем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения. Как видно, поворот правого торцевого сечения относительно неподвижного левого на угол (назовем его углом закручивания стержня) вызывает поворот продольных волокон на угол (угол сдвига), поскольку на величину искажаются углы ортогональной сетки продольных и поперечных рисок модели.

Двумя смежными сечениями вырежем элемент стержня длиной dz и, поскольку нас интересуют деформации элемента, левое сечение его будем считать неподвижным (рис. 5). При повороте правого сечения на угол в соответствии с гипотезой о недеформируемости радиусов, правый конец волокна АВ (отстоящий от оси элемента на величину полярного радиуса ) будет перемещаться по дуге BB1, вызывая поворот волокна на угол сдвига

Обратим внимание на то, что в соответствии с рис. 5 и рис. 6, а сдвиг и связанное с ним касательное напряжение перпендикулярны радиусу . Определим , воспользовавшись законом Гука для чистого сдвига

(1)

Решение пространственных задач на комплексном чертеже значительно упрощается, если интересующие нас объекты занимают в пространстве частное положение, т.е. располагаются параллельно или перпендикулярно плоскостям проекций.



Рис.5. Расчетная модель определения касательных напряжений



а) ортогональность и
Рис.6. Распределение касательных напряжений при кручении:

Здесь — погонный угол закручивания стержня, который остается пока неизвестным. Для его нахождения обратимся к условию статики, записав его в более удобной для данного случая форме (рис. 6, a)

(2)

Подставляя (1) в (2) и учитывая, что

где Jp—; полярный момент инерции поперечного сечения (для круга с диаметром d ), получаем

(3)



Рис.7. Распределение напряжений для кольцевого сечения



а) разрушение дерева, б) разрушение чугуна
Рис.8. Распределение исходных касательных и главных напряжений:

Подставляя выражение (3) в (1), получаем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения

(4)

Как видно из (4), сдвиги и касательные напряжения пропорциональны расстояний от оси стержня. Обратим внимание на структурные аналогии формул для нормальных напряжений чистого изгиба и касательных напряжений кручения.

 П р и м е р. Колесо радиуса г и веса Р катится без скольжения по горизонтальной плоскости под действием силы F, приложенной в центре инерции колеса (рис. 119). Задан закон движения центра инерции колеса хc = , уc = г.

Найти величину силы F, нормальную реакцию опоры N и коэффициент трения k колеса о плоскость.

 Произведем анализ сил, действующих на колесо. На него действует сила F, сила тяжести Р и реакция горизонтальной плоскости, состоящая из нормальной реакции N и силы трения Fтр, которая направлена в сторону, противоположную движению колеса.

 Применив уравнения (111.226), получим

   

Так как

xc=1, yc=0, Fтр=kN, Mc=-Fтрr=-kNr,

то

 N=P, 

Мгновенный центр скоростей тела находится в точке касания колеса с плоскостью движения. Поэтому

 

Таким образом,

    N=P,