Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов

Во всех приведенных выше уравнениях функция изгибающего момента Мх(г) предполагалась известной, что возможно лишь для статически определимых балок. Простейшие варианты статически определимых однопролетных балок и соответствующие граничные условия показаны на рис. 3. Условия, накладываемые на прогиб и угол поворота сечения, получили название кинематических граничных условий. Как видно, для шарнирно опертой балки требуется, чтобы прогиб на опорах v(0) =v(l) =0, а для консольной балки прогиб и угол поворота сечения в заделке



Рис.3. Примеры граничных условий: а) двухопорная, б) консольная балки

Цилиндрические косозубные передачи Косозубые колеса, как и прямозубые, изготовляются способом обкатки, в основу которого положен процесс станочного зацепления.

Дифференциальное уравнение неприменимо для расчета статически неопределимых балок, так как содержит неизвестный изгибающий момент Мx появившийся в результате двукратного интегрирования уравнения четвертого порядка

(7)

В этом уравнении нагрузка q известна, поэтому его можно получить, учитывая, что

При интегрировании уравнения необходимо задать четыре граничных условия (по два на каждом конце балки) в том числе так называемые силовые граничные условия — условия, накладываемые на силовые величины (изгибающий момент и поперечную силу), которые выражаются через производные от прогиба. Так как

а с учетом дифференциального соотношения Qy=dMx/dz, получаем

(8)

Вернемся к интегрированию уравнения второго порядка. Если имеется несколько участков, для которых правая часть уравнения исходного f(z)=Mx/EJx, содержит разные аналитические выражения, то интегрирование усложняется. На рис. 4 приведена эпюра Мx, содержащая п участков. Для каждого участка независимое интегрирование дает по две константы, а при п участках требуется определить 2n постоянных. Добавляя к двум граничным условиям на опорах 2(n—1) условия непрерывности и гладкости упругой кривой на границе; смежных участков, заключающиеся в равенстве прогибов v и углов поворота сечений dv/dz на этих границах

получим 2п граничных условий, необходимых для нахождения постоянных интегрирования.



Рис.4. Расчетная схема балки, содержащая n углов

Дифференциальные уравнения плоско-параллельного движения твердого тела

 Как известно из кинематики (ч.II., гл. V, § 3), плоско-параллельное движение твердого тела определяется тремя независимыми параметрами: координатами хc и уc полюса (который выберем в центре инерции С тела) и углом поворота φ тела вокруг центра инерции (рис. 118). Следовательно, в данном случае тело имеет три степени свободы (k = 3). Поэтому составим три уравнения Лагранжа второго рода

 (j=1,2,3).

Будем рассматривать координаты хc, уc и угол поворота φ, как обобщенные координаты: q1=xc, q2=yc, q3= φ 

 Пусть к телу приложена система сил F1, F2,…,Fn указанная на рис. 118. Вычислим обобщенные силы

где Rx, Ry — проекции главного вектора приложенных к телу внешних сил Fi на координатные оси Ох и Оу, а Мc — главный момент этих сил относительно оси Сz,перпендикулярной к плоскости движения.

 Обобщенные силы соответственно равны

  

Кинетическая энергия тела согласно формуле (111.121) равна

где m — масса тела, Ic-его момент инерции относительно центральной оси Сz.