Всегда готовы помочь - ветеринарные препараты - мы знаем что вам предложить.

Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов

Рациональные формы поперечных сечений при изгибе

Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Иными словами необходимо, чтобы наибольшие напряжения растяжения (max ) н наибольшие напряжения сжатия (max ) одновременно достигали допускаемых напряжений и .

Поэтому для балки из пластичного материала (одинаково работающего на растяжение и сжатие: ), условие равнопрочности выполняется для сечений, симметричных относительно нейтральной оси. К таким сечениям относится, например, прямоугольное сечение (рис. 9, а), при котором обеспечено условие равенства . Однако в этом случае материал, равномерно распределенный по высоте сечения, плохо используется в зоне нейтральной оси. Чтобы получить более рациональное сечение, необходимо возможно большую часть материала переместить в зоны, максимально удаленные от нейтральной оси. Таким образом, приходим к рациональному для пластичного материала сечению в форме симметричного двутавра (рис. 9, б), у которого возможно большая часть материала сосредоточена на полках (горизонтальных массивных листах), соединенных стенкой (вертикальным листом), толщина которой назначается из условий прочности стенки по касательным напряжениям, а также из соображений ее устойчивости. К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение (рис. 9, в). Основные ограничения при выборе коэффициентов смещения Согласно свойствам эвольвентного зацепления прямолинейная, т.е. эвольвентная, часть ИПК и эвольвентная часть профиля зуба колеса располагаются касательно друг к другу только на линии станочного зацепления, начинающейся в точке N. Левее этой точки прямолинейный участок ИПК не касается эвольвентного профиля зуба колеса, а пересекает его



Рис.9. Распределение нормальных напряжений в симметричных сечениях

Рассуждая аналогично, приходим к выводу, что для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие (рис. 10):

которое вытекает из требования



Рис.10. Распределение напряжений несимметричного профиля сечения балки.



а) двутавр, б ) швеллер, в) неравнобокий уголок, г) равнобокий уголок
Рис.11. Используемые профили сечений:

Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов, получивших широкое распространение в строительстве, машиностроении, авиационном машиностроении. Широко распространены показанные на рис. 11: а—двутавр, б— швеллер, в — неравнобокий уголок, г—равнобокий уголок. Реже встречаются тавр, таврошвеллер, зетовый профиль и др. Употребляются также холодногнутые замкнутые сварные профили (рис. 12).



Рис.12. Замкнутые сварные профили

Поскольку по соображениям технологии сортамент стандартных профилей по размерам ограничен (например, наибольший прокатный двутавр согласно ГОСТ 8239—72 имеет высоту 550 мм), то для больших пролетов приходится применять составные (сварные или клепаные) балки.

Дифференциальные уравнения движения свободного твердого тела

  Пусть свободное твердое тело движется под действием приложенных к нему сил F1, F2,…,Fn. Требуется определить движение этого тела относительно неподвижной системы координат Охуz. Начало подвижной системы координат Сξηζ поместим в центре инерции (центре тяжести) С тела и предположим, что подвижная система координат относительно неподвижной движется поступательно.

 Из кинематики известно (ч. II, гл. VII, § 1), что движение свободного твердого тела может быть разложено на поступательное вместе с произвольно выбранным полюсом и мгновенно вращательное вокруг полюса. В качестве полюса выберем центр инерции тела. Следовательно, при определении движения свободного твердого тела под влиянием приложенных к нему сил сначала нужно определить движение его центра инерции, а затем мгновенно вращательное движение относительно центра инерции, рассматривая его как неподвижную точку и применяя при этом теорию вращательного движения тела вокруг неподвижной точки под действием указанных выше внешних сил.

 Таким образом, на основании (111.217) и (111.228) дифференциальные уравнения движения свободного твердого тела примут вид

  

 

где т — масса тела;    проекции главного вектора приложенных к телу внешних сил на неподвижные координатные оси; хc, уc, rc — проекции ускорения центра инерции тела на эти же оси; p, q, r — проекции мгновенной угловой скорости вращения тела вокруг центра инерции на подвижные оси, неизменно связанные с телом и являющиеся его главными осями инерции относительно центра инерции; А, В, С — главные моменты инерции тела относительно подвижных осей; Мξ, Мη, Мζ — главные моменты приложенных к телу внешних сил относительно подвижных осей.

 Уравнения (III. 233) представляют собой систему шести дифференциальных уравнений, из которых можно определить шесть неизвестных функций

xc=xc(t), yc=yc(t), zc=zc(t); p=p(t), q=q(t), r=r(t).

Для определения углов Эйлера ψ=ψ(t), θ=θ(t), φ=φ(t) нужно воспользоваться кинематическими уравнениями Эйлера (П.113). При интегрировании всех указанных уравнений нужно учитывать начальные условия движения свободного твердого тела.