Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов

Прямой чистый изгиб стержня

При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент Мх (рис. 1). Так как Qy=dMx/dz=0, то Mx=const и чистый прямой изгиб может быть реализован при загружении стержня парами сил, приложенными в торцевых сечениях стержня. Поскольку изгибающий момент Mх по определению равен сумме моментов внутренних сил относительно оси Ох с нормальными напряжениями его связывает выкающее из этого определения уравнение статики

.

Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала, на боковой поверхности которого нанесена сетка продольных и поперечных рисок (рис. 2). Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, которая, как показывает решение этой задачи методами теории упругости, перестает быть гипотезой, становясь точным фактом — законом плоских сечений. Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон .

Ортогональность продольных и поперечных рисок до и после деформирования (как отражение действия закона плоских сечений) указывает также на отсутствие сдвигов, касательных напряжений в поперечных и продольных сечениях стержня.



Рис.1. Связь внутреннего усилия и напряжения Построение эпюр изгибающих моментов и поперечных сил. Рассмотрим пример построения эпюр поперечных сил Q и изгибающих моментов Mx.



Рис.2. Модель чистого изгиба

Таким образом, чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями (индекс г в дальнейшем опускаем). При этом часть волокон находится в зоне растяжения (на рис. 2 это—нижние волокна), а другая часть—в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (п—п), не меняющим своей длины, напряжения в котором равны нулю. Учитывая сформулированные выше предпосылки и полагая, что материал стержня линейно-упругий, т. е. закон Гука в этом случае имеет вид: , выведем формулы для кривизны нейтрального слоя (—радиус кривизны) и нормальных напряжений . Предварительно отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (Mх=сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня (рис. 3, а), нейтральный слой (п—п) описывается дугой окружности.

Теорема о проекциях скоростей двух точек тела

Из доказанной теоремы вытекает следствие: проекции скоростей концов неизменяемого отрезка на направление этого отрезка равны между собой.

Действительно, так как относительная скорость υOM перпендикулярна к радиусу - вектору ОМ = rOM, то, проектируя обе части векторного равенства (11.95) на направление отрезка ОМ, получим

пp υM(ОМ) = пр υ0(ОМ).

План скоростей

В инженерной практике при определении скоростей точек плоских механизмов пользуются графическим методом, именуемым планом скоростей.

План скоростей — это чертеж, изображающий векторы скоростей точек плоской фигуры в фиксированный момент времени ее движения. Для построения плана скоростей нужно знать величину и направление скорости одной точки и направление скорости второй точкой плоской фигуры. Затем следует применить теорему о нахождении скоростей точек тела при плоско – параллельном движении.

Пусть в некоторый момент времени задана скорость точки А и направление скорости точки В плоской фигуры. Требуется найти величину скорости υВ точки В и скорость υС любой точки С (рис.72, а). Выбирая точку А за полюс, по формуле (ІІ.95) получим

υВ= υА+ υАВ

где скорость υАВ перпендикулярна АВ.

Из произвольного полюса О в выбранном масштабе откладываем вектор Оа= υА (рис. 72, б). Из точки а проводим прямую ab , перпендикулярную АВ, а из полюса – прямую, параллельную направлению искомой скорости точки В до взаимного пересечения в точке b. Вектор Оb представляет собой в выбранном масштабе скорость точки b: Оb= υВ. Вектор ab равен скорости точки В во вращательном движении вокруг точки А, т.е. ab= υАВ. Так как скорость точки С неизвестна ни по величине, ни по направлению, то составим для ее определения два уравнения, выбирая сначала за полюс точку А, а затем – точку В, и применяя формулу (ІІ.95). Получим υС= υА+ υАС, υС= υВ+ υВС , где υАС – перпендикулярна АС и υВС – перпендикулярна ВС. Тогда соответственно из точек а и b проводим прямые, перпендикулярные АС и ВС до взаимного пересечения в точке с (рис. 72, б). Вектор Ос в выбранном масштабе равен скорости точки С: Ос= υС. Соответственно ас= υАС, bc= υВС. Полученная фигура называется планом скоростей. На плане скоростей получается фигура, подобная данной, но повернутая на угол  в сторону вращения рассматриваемой плоской фигуры. Действительно, треугольник abc на плане скоростей подобен треугольнику АВС плоской фигуры. Отношение подобие этих фигур равна величине угловой скорости вращения плоской фигуры, т.е.

или