Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов Курсовая работа по сопромату (сопротивление материалов). Примеры расчетов

Способ сравнения деформаций.Применение вариационных методов. Раскрытие статической неопределимости для балки, может быть произведено и при помощи теоремы Кастильяно.

Раскрытие статической неопределимости возможно выполнить также и по теореме Мора.

Выбор лишней неизвестной и основной системы.   В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В.

Решение той же основной системы (Рис.4, а) с применением способа Верещагина потребует изображения второго состояния загружения основной системы моментом (Рис.4, б) и построения эпюр изгибающего момента: от заданной нагрузки q (Рис.4, в), от момента (Рис.4, г) и от единичной нагрузки; (Рис.4, д).

Определение деформаций статически неопределимых балок. После того, как определены опорные реакции, построены эпюры изгибающих моментов и поперечных сил, подобраны сечения статически неопределимой балки, определение ее деформаций ничем- не отличается от таких же вычислений для статически определимой балки.

Расчет статически неопределимых стержневых систем Связи, накладываемые на систему. Степень статической неопределимости.

Положение жесткого бруса в пространстве определяется шестью независимыми координатами, иначе говоря, жесткий брус обладает шестью степенями свободы.

В раме рис. 4, а и б также имеются внутренние дополнительные связи. Контур рамы полностью замкнут.

Метод сил. Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил.

Основная система, к которой приложены все внешние заданные силы и неизвестные силовые факторы, носит название эквивалентной системы.

Аналогичным образом запишем и остальные пять уравнений: каждое из слагаемых , входящих в уравнение, обозначает перемещение в направлении силы с первым индексом под действием силы, стоящей во втором индексе.

Обратимся к интегралам Мора. Для того чтобы определить величину , следует вместо внешних сил рассматривать единичную силу, заменяющую k-й фактор.

Определяем коэффициенты уравнений, считая, что жесткость на изгиб всех участков рамы постоянна и равна EJ.

Расчет толстостенных цилиндров. В тонкостенных цилиндрических резервуарах, подвергнутых внутреннему давлению, вполне возможно при вычислениях считать напряжения равномерно распределенными по толщине стенки.

Условие равновесия дало только одно уравнение для нахождения двух неизвестных напряжений.

Постоянные А и В определятся из условий на внутренней и наружной поверхностях цилиндра: (8) .

Полное исчерпание грузоподъемности произойдет тогда, когда кольцевая пластическая зона, распространяясь от внутренней поверхности цилиндра, дойдет до наружной; состояние разрушения наступит тогда, когда материал у наружной поверхности достигнет состояния, при котором произойдет разрыв.

Напряжения в сферических толстостенных сосудах. На фиг. 547 изображен элемент, вырезанный из толщи стенки толстостенного сферического сосуда; внутренний радиус этого элемента равен r, а наружный ; напряжения, действующие на этот элемент, изображены на чертеже.

Для тонкостенных резервуаров, имеющих форму поверхностей вращения и находящихся под внутренним давлением р, распределенным симметрично относительно оси вращения, можно вывести общую формулу для вычисления напряжений.

Рассмотрим случай гидростатической нагрузки (рис.3). Меридиональную кривую отнесем к осям х и у с началом координат в вершине кривой.

Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом.

Прогиб точки В основной системы под действием нагрузок q и В складывается из двух прогибов: одного , вызванного лишь нагрузкой q, и другого , вызванного реакцией В. Таким образом,

(1)

Остается вычислить эти прогибы. Для этого загрузим основную систему одной нагрузкой q (рис.4, а).



Рис.4. Расчет прогиба от исходной нагрузки — а) и реакции — б)

Тогда прогиб точки В будет равен:

При нагружении основной системы реакцией В (Рис.4,б) имеем:

Подставляя эти значения прогибов в уравнение (1), получаем:

Отсюда

В этом способе мы сначала даем возможность основной системе деформироваться под действием внешней нагрузки q, а затем подбираем такую силу В, которая бы вернула точку В обратно. Таким образом, мы подбираем величину неизвестной дополнительной реакции В с тем расчетом, чтобы уравнять прогибы от нагрузки q и силы В. Этот способ и называют способом сравнения деформаций.



Рис.5. Эпюры поперечных сил и внутренних изгибающих моментов.

Подставляя значение лишней реакции В в уравнения статики, получаем

Выражение изгибающего момента получаем, рассматривая правую часть балки (Рис.4) и подставляя значение В:

Поперечная сила Q выражается формулой

Эпюры моментов и поперечных сил изображены на рис.5. Сечение с наибольшим положительным моментом соответствует абсциссе , определяемой равенством

т.е.

Отсюда соответствующая ордината эпюры моментов, равна:

Ускорения точек: ,

 – ускорение любой точки (В) фигуры геометрически складывается из ускорения полюса (А) и центростремительного и вращательного ускорений во вращательном движении тела относительно полюса. , , , . Мгновенный центр ускорений – точка (Q) плоской фигуры, ускорение которой в данный момент времени равно нулю. Для его построения из точки А откладываем под углом  к ускорению аА отрезок , при этом угол откладывается от ускорения в сторону, направления углового ускорения e. Модули ускорений точек плоской фигуры пропорциональны расстояниям от этих точек до мгн.ц. ускорений, а векторы ускорений составляют с отрезками, соединяющими эти точки и м.ц.у. один и тот же угол . Мгновенный центр скоростей Р и мгновенный центр ускорений Q являются различными точками плоской фигуры.

 


Смотрите здесь реплика samsung galaxy s8 plus.