Контрольная по математике. Тема: Интегральное исчисление

Решение задач
Лекции и конспекты
Подготовка к экзамену
Тема: Колебания
Переменный ток
Оптика
Решение задач по физике
Техническая механика
Ядерная физика
Математика
Аналитическая геометрия
Дифференциальное исчисление
Интегральное исчисление

Выполнение
графических работ

Черчение
Мастерская по рисунку
Сборочные чертежи
Начертательная геометрия
Курсовая работа по сопромату
Сопротивление материалов
Электротехника
Лабораторные работы по
электротехнике
Производственная практика
Основы полупроводниковой
электроники
Расчет электрических цепей
Теория конструктивных материалов
ТКМ
Проводники
Полупроводниковые материалы
Диэлектрики
Электропроводность
Диэлектрические потери
Информатика
Безопасность в компьютерных
сетях
Защита информации
Одноранговые сети
Клиент-серверная модель
Беспроводные компьютеры
Службы и протоколы
История глобальных сетей
Стандартизация сетей
 

Интегральное исчисление

Методы интегрирования Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Интегрирование элементарных дробей Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Определенный интеграл Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке

Интегрирование некоторых тригонометрических функций Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда

Интегрирование некоторых иррациональных функций Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Интегрирование биноминальных дифференциалов Существует несколько способов интегрирования такого рода функций. В зависимости от вида выражения, стоящего под знаком радикала, предпочтительно применять тот или иной способ.

Интегрирование по частям Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:

Вычисление определенного интеграла Пусть в интеграле   нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.

Геометрические приложения определенного интеграла Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

Вычисление объемов тел. Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [a, b]. Т.к. на каком- либо промежуточном отрезке разбиения [xi-1, xi] функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.

Функции нескольких переменных При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты будут справедливы для функций произвольного числа переменных.

Производные и дифференциалы функций нескольких переменных Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f( x + Dx, y) – f(x, y) называется частным приращением функции по х.

Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности. Нормалью к поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности.

Производная по направлению Проведем через точки М и М1 вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно a, b, g. Косинусы этих углов называются направляющими косинусами вектора .

Частные производные высших порядков Если функция f(x, y) определена в некоторой области D, то ее частные производные  и  тоже будут определены в той же области или ее части.

Экстремум функции нескольких переменных Условный экстремум находится, когда переменные х и у, входящие в функцию u = f( x, y), не являются независимыми, т.е. существует некоторое соотношение

Градиент Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке

Кратные интегралы Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

Вычисление двойного интеграла Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями х = a, x = b, (a < b), y = j(x), y = y(x), где j и y - непрерывные функции и

Тройной интеграл При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

Цилиндрическая система координат Связь координат произвольной точки Р пространства в цилиндрической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

Геометрические и физические приложения кратных интегралов

Вернуться на Главную