Полупроводники
Мастерская
Электроника
Карта

Исследование функции на экстремум с помощью производных высших порядков.

  Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.

  Теорема. Если f¢(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f¢¢(x1)<0 и минимум, если f¢¢(x1)>0.

  Доказательство.

 Пусть f¢(x1) = 0 и f¢¢(x1)<0. Т.к. функция f(x) непрерывна, то f¢¢(x1) будет отрицательной и в некоторой малой окрестности точки х1.

Т.к. f¢¢(x) = (f¢(x))¢ < 0, то f¢(x) убывает на отрезке, содержащем точку х1, но f¢(x1)=0, т.е. f¢(x) > 0 при х<x1 и f¢(x) < 0 при x>x1. Это и означает, что при переходе через точку х = х1 производная f¢(x) меняет знак с “+” на “-“, т.е. в этой точке функция f(x) имеет максимум.

Для случая минимума функции теорема доказывается аналогично.

Если f¢¢(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.

Выпуклость и вогнутость кривой. Точки перегиба.

 Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.

 

 у

 

 

 

 

 

 

  На рисунке показана иллюстрация приведенного выше определения.

  Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).

 Доказательство. Пусть х0 Î (a, b). Проведем касательную к кривой в этой точке.

  Уравнение кривой: y = f(x);

 Уравнение касательной:

Следует доказать, что .

 

По теореме Лагранжа для f(x) – f(x0):  , x0 < c < x.

 

По теореме Лагранжа для  

 

Пусть х > x0 тогда x0 < c1 < c < x. Т.к. xx0 > 0 и cx0 > 0, и кроме того по условию

, следовательно, .

Пусть x < x0 тогда x < c < c1 < x0 и xx0 < 0, cx0 < 0, т.к. по условию то

.

 Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).

 Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.

  Очевидно, что в точке перегиба касательная пересекает кривую.

  Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

 Доказательство. 1) Пусть f¢¢(x) < 0 при х < a и f¢¢(x) > 0 при x > a. Тогда при

x < a кривая выпукла, а при x > a кривая вогнута, т.е. точка х = а – точка перегиба.

2)      Пусть f¢¢(x) > 0 при x < b и f¢¢(x) < 0 при x < b. Тогда при x < b кривая обращена выпуклостью вниз, а при x > b – выпуклостью вверх. Тогда x = b – точка перегиба.

Контрольная по математике. Тема: Интегральное исчисление Интегральное исчисление


На главную