Решение задач по физике. Тема: Оптика

Решение задач
Лекции и конспекты
Подготовка к экзамену
Тема: Колебания
Переменный ток
Оптика
Решение задач по физике
Техническая механика
Ядерная физика
Математика
Аналитическая геометрия
Дифференциальное исчисление
Интегральное исчисление

Выполнение
графических работ

Черчение
Мастерская по рисунку
Сборочные чертежи
Начертательная геометрия
Курсовая работа по сопромату
Сопротивление материалов
Электротехника
Лабораторные работы по
электротехнике
Производственная практика
Основы полупроводниковой
электроники
Расчет электрических цепей
Теория конструктивных материалов
ТКМ
Проводники
Полупроводниковые материалы
Диэлектрики
Электропроводность
Диэлектрические потери
Информатика
Безопасность в компьютерных
сетях
Защита информации
Одноранговые сети
Клиент-серверная модель
Беспроводные компьютеры
Службы и протоколы
История глобальных сетей
Стандартизация сетей
 

Волны – это распространяющиеся в пространстве изменения состояния среды, сопровождающиеся переносом энергии. В частности, механические (упругие) волны в каком-либо веществе представляют собой распространяющиеся в этом веществе механические напряжения, электромагнитные – распространяющееся электромагнитное поле. Упругие волны могут возникать в твердых, жидких и газообразных средах; электромагнитные – могут распространяться также и в вакууме.

Совокупность точек, колеблющихся в одной и той же фазе, составляет волновую поверхность. Волновых поверхностей бесконечно много, «самая передняя» из них называется фронтом волны. Волна, описывающаяся соотношением (7.2), потому и называется плоской, что все ее волновые поверхности – плоскости.

Задача Доказать, что амплитуда сферической волны обратно пропорциональна расстоянию до источника волн r

Интерференция света – пространственное перераспределение энергии светового потока при наложении двух или нескольких световых волн с образованием максимумов и минимумов интенсивности в различных точках пространства. Это явление может происходить, если световые волны имеют постоянную, не зависящую от времени, разность фаз.

Задача Используя определенные аналогии между параметрами упругих и электромагнитных волн, укажите относительное расположение максимумов электрического и магнитного поля в бегущих и стоячих электромагнитных волнах.

Изобразите зависимости от координаты потенциальной и кинетической энергий упругой волны в момент времени, зафиксированный на рис.7.3.

Теперь рассмотрим связь между разностью фаз Dj колебаний, приходящих в точку наблюдения О от двух точечных монохроматических источников (l1 = l2 = l)  и разностью хода Dr = r2 – r1 распространяющихся от этих источников волн

Расчет интерференционной картины в схеме Юнга. В схеме Юнга для получения для получения когерентных волн используется метод деления одной и той же исходной волны на две, затем эти две волны проходят разный путь и вновь собираются вместе (см. рис.8.3). В качестве первичного источника излучения используется точечный монохроматический источник S.

Условия наблюдения интерференции.

Наблюдение интерференции с помощью билинзы. Билинза представляет собой разрезанную по диаметру тонкую линзу, обе половины которой раздвинуты на расстояние Z. Полученная таким образом оптическая система создает два изображения источника света S, волновые поля которых когерентны и могут создавать интерференционную картину.

Формирование двух когерентных источников с помощью бипризмы.

 Если толщина пленки d постоянна а на плёнку падает непараллельный пучок света, то разность хода интерферирующих лучей определяется углом преломления b, и, следовательно, углом падения луча на пленку a. В этом случае интерференционная картина представляет собой так называемые «полосы равного наклона». При постоянной толщине пленки интерферирующие лучи параллельны и говорят, что интерференционная картина локализована на «бесконечности» или в фокальной плоскости собирающей линзы.

Найти интенсивность I волны, образованной  наложением двух волн одинаковой частоты, поляризованных во взаимно перпендикулярных направлениях. Значения интенсивности этих волн I1 и I2

Дифракция света. Явление дифракции заключается в том, что при прохождении света через малые отверстия или около краев непрозрачных преград световые волны проникают в область геометрической тени. При этом на экране, поставленном за препятствием, наблюдается чередование максимумов и минимумов освещенности, как и при интерференции когерентных световых пучков. Это позволяет сделать вывод о том, что природа явлений дифракции и интерференции одна и та же.

Плосковыпуклая стеклянная линза, соприкасающаяся выпуклой поверхностью со стеклянной пластинкой, освещается монохроматическим светом. Наблюдение ведется в отраженном свете. Радиусы двух соседних темных колец равны соответственно r1 = 4,0 мм и r2 = 4,4 мм. Радиус кривизны линзы R = 6,4 м. Найти порядковые номера колец и длину волны падающего света.

 Построение векторных диаграмм при дифракции Френеля

Задачи для самостоятельного решения.

Получить выражение для радиуса n – ой зоны Френеля rn при падении на круглое отверстие плоской волны длиной l. Расстояние от отверстия до экрана равно l. Доказать, что площади всех зон Френеля одинаковы.

Дифракция Фраунгофера Дифракция на щели

Угловая дисперсия  является размерной величиной и определяет угловое расстояние между двумя спектральными линиями, отличающимися на единичный

Пусть на протяженную щель шириной b, вырезанную в непрозрачном экране, падает по нормали плоская монохроматическая волна. В соответствие с принципом Гюйгенса-Френеля, фронт волны в плоскости щели можно разбить на зоны Френеля, представляющие собой в рассматриваемом случае узкие полоски, параллельные краям щели. Линза “выбирает” параллельные лучи, испускаемые зонами Френеля, и фокусирует их в точку В на экране Э. Таким образом, число зон Френеля k, открытых для точки В на экране, определяется из условия: bsinj = kl/2, т.е. зависит только от угла дифракции j  при постоянных b и l. При этом неявно учитывается такое свойство линзы,

Характерным параметром дифракционной картины от щели является угловое положение первого дифракционного минимума sinj1 = l/b. Этот параметр определяет тип дифракции, а также разрешающую способность оптических приборов.

Учитывая, однако, приближенный характер соотношений (10.4) и (10.4,а), мы в дальнейшем будем использовать более простую оценку разрешающей способности оптических приборов с помощью неравенства (10.4).

Дифракция Фраунгофера на дифракционной решетке

Поляризация света Поляризация поперечных волн состоитв нарушении симметрии распределения возмущений относительно направления распространения волны. Для продольных волн такое нарушение симметрии невозможно, поэтому продольные волны не бывают поляризованными.

Линейная дисперсия характеризует величину линейного расстояния (на экране или фотопленке) между двумя спектральными линиями, отличающимися на единичный интервал длин волн. При малых углах дифракции расстояние между максимумами двух спектральных линий dx связано с угловым расстоянием между ними простым соотношением

Задача Степень поляризации частично поляризованного света Р = 0,25. Найти отношение k интенсивности плоско-поляризованной составляющей этого света I1 к интенсивности естественной (неполяризованной) составляющей I*.

Задача Двойное лучепреломление. Оптическая анизотропия кристаллов приводит к тому, что скорость распространения света, и, следовательно, показатель преломления, зависят от ориентации плоскости поляризации света, проходящего через кристалл.

Монохроматический поляризованный по левому кругу свет с интенсивностью I0 падает нормально на положительную кристаллическую пластинку, вырезанную параллельно оптической оси. За пластинкой находится анализатор, направление пропускания которого составляет угол a с осью пластинки. Определить интенсивность света, прошедшего через эту систему.

На пути плоскополяризованного монохроматического света находится клиновидная кварцевая пластинка, вырезанная параллельно оптической оси. Угол при вершине клина j = 3.42¢. Ось пластины образует угол 450 с направлением колебаний вектора E в падающем луче. Разность показателей преломления обыкновенного и необыкновенного лучей Dn = 0,009. Найти расстояние Dх между серединами светлых полос, наблюдаемых за анализатором. Длина волны света l = 0,54 мкм.

Определить степень поляризации Р света, представляющего собой смесь естественного света с плоскополяризованным, если отношение k интенсивности поляризованного света к интенсивности естественного равна: а) 1; б) 10?

Каков должен быть преломляющий угол a у стеклянной призмы с показателем преломления n, чтобы углы входа и выхода луча из призмы были углами полной поляризации?

горячо вертит задницей на члене жми сюда онлайн бесплатно Вернуться на Главную