Решение задач по физике. Тема: Колебания

Общие свойства гармонических колебаний.

Задача Частица совершает гармонические колебания по оси X.

Решение По второму закону динамики для монеты N - mg = ma, где N – сила, действующая на монету со стороны подставки вверх (по оси Y), а – ускорение монеты.

Амплитуда колебаний грузика на пружинке возросла в два раза. Во сколько раз увеличились энергия колебаний и площадь его фазовой траектории .

Найти частоту малых свободных колебаний w0 физического маятника – тела произвольной формы, закрепленного на горизонтальной оси, не проходящей через его центр тяжести. Момент инерции тела относительно этой оси равен J, его масса m, а расстояние от оси до центра тяжести тела равно b.

Задачи для самостоятельного решения. Рассмотрим ситуацию, моделирующую процесс столкновение атома и молекулы. Первоначально система, описанная в задаче 2.3, неподвижна и пружинка не деформирована. Второму шарику сообщается импульс p0 = m2V0 в сторону первого (удар налетающего атома). Определите скорость Vc центра масс системы, и частоту w0 возникающих колебаний

В устройстве, показанном на рисунке, блок представляет собой сплошной однородный цилиндр массой М = 8 кг, который может вращаться вокруг оси без трения. Масса груза т = 6 кг. Жесткость пружины k = 1000 H/м. Считая, что проскальзывание нити по блоку отсутствует, а сама нить невесома и нерастяжима, найти частоту малых колебаний груза w0.

Доску положили на два быстро вращающихся навстречу друг другу (в противоположных направлениях) цилиндрических ролика. Расстояние между осями роликов l = 80 см, коэффициент трения скольжения между стержнем и роликами m = 0,16. Покажите, что стержень будет совершать гармонические колебания и найдите их частоту w0.

В кабине самолета подвешен маятник. Когда самолет летит без ускорения, маятник качается с частотой w0. Какова будет частота колебаний маятника, если самолет взлетает с ускорением а, направленным под углом a к горизонту? Отдельно рассмотрите случай, когда а = g и a = 0.

Затухающие колебания

Задача В условиях предыдущей задачи определить параметры затухающих колебаний в системе: а) время релаксации амплитуды (tA); б) количество колебаний, за которое амплитуда уменьшится в e раз (Ne); в) логарифмический декремент затухания g ;

Таким образом оказалось, что добротность равна числу колебаний осциллятора, за которое амплитуда уменьшается в 23 раза.

Задача При какой величине коэффициента вязкости r в устройстве, рассмотренном в задачах 4.1-4.3, реализуется критический режим. Определить зависимость смещения от времени в критическом режиме, если в начальный момент времени телу в положении равновесия сообщают скорость V0 = 1 м/с.

В представленных выше задачах (4.1 – 4.6) затухание колебаний обусловлено наличием вязкого трения. Колебания в системе с “сухим трением” рассмотрим на примере следующей задачи.

Весьма наглядными амплитудные и фазовые соотношения между колебаниями, делает векторная форма представления колебаний. В частности, она позволяет качественно и количественно описывать вынужденные колебания. Каждой гармонической функции можно сопоставить вектор на плоскости, длина которого равна амплитуде колебания, а полярный угол – его фазе. Для гармонических колебаний этот вектор вращается относительно начала координат (точки О) против часовой стрелки с угловой скоростью w, равной частоте колебаний. Проекция вектора на ось Х и дает значение гармонической функции.

Отметим, что отсчет времени в этой записи решения следует начинать от начала данного этапа движения. A1 = x1 + x0 = - 4,8 см. Частота колебаний, конечно, прежняя.

Музыкальный камертон имеет собственную частоту колебаний n = 1000 Гц. Через какое время громкость его звучания уменьшится в п = 106 раз, если логарифмический декремент затухания равен g  = 0,0006?

Для определения амплитуды вынужденных колебаний А и фазового сдвига a достаточно провести сложение векторов ч

Приведем также точный вид амплитудной резонансной кривой для рассмотренного случая вынужденных колебаний. Горизонтальным пунктиром указан уровень амплитуды вынужденных колебаний в  раз меньший резонансного (что соответствует уменьшению колебательной энергии в 2 раза). Он определяет “ширину резонансной кривой” Dw.

При некоторой скорости движения поезда его вагоны особенно сильно раскачиваются на рессорах в результате периодических толчков колес о стыки рельс. Когда поезд стоит на станции, рессоры деформированы под нагрузкой вагонов на Dх = 10 см. Длина рельс l = 12,5 м. Определить по этим данным скорость движения поезда.

Тело, подвешенное на пружине, совершает установившиеся вынужденные колебания.

orel.dosug-city.org - зрелые проститутки Орла Вернуться на Главную