Электротехнические материалы Проводники

В начале 1987г. появились сообщения о разработке керамического материала со структурой YBa2Cu3O7 , в котором сверхпроводящее состояние наступает при 93К в поле с Вкр=5.7Тл.

Явление сверхпроводимости открыто в 1911 г. Камерлинг-Оннесом, обнаружившем, что ртуть, охлажденная до температуры жидкого гелия (4.4К), полностью теряет электрическое сопротивление. Позднее было установлено, что сверхпроводимость возможна в олове, свинце и других металлах. К настоящему времени известно 35 металлов и более тысячи сплавов и химических соединений различных элементов, обладающих сверхпроводимостью.

Перспективы применения сверхпроводников достаточно четко были отражены в статье "Новые сверхпроводники: перспективы применеия"

Сверхпроводники 1-го рода могут существовать в сверхпроводящем или нормальном состоянии, а сверхпроводники 2-го рода в одном из трех состояний - в сверхпроводящем, смешанном или нормальном. Сверхпроводящие вихри окружают сердцевины с нормальной проводимостью.

Металлические сплавы обычно представляют механическую смесь исходных металлов, твердый раствор или химические (интерметаллические) соединения.

Отношение коэффициента теплопроводности [MET8B] к удельной проводимости металла выражается законом Видемана - Франца - Лоренца

Манганины - сплавы на медной основе, содержащие около 85% Cu , 12% Mn , 3% Ni.

Из проводниковых материалов - твердых тел, жидкостей и газов в электротехнике наиболее часто применяют металлы и сплавы.

Серебро - один из наиболее дефицитных матералов, достаточно широко применяемый в электротехнике и электронике для высокочастотных кабелей, защиты медных проводников от окисления, для электродов некоторых типов керамических и слюдяных конденсаторов в электрических контактах, где оно используется в сплавах с медью, никелем или кадмием, в припоях ПСр-10, ПСр-25 и др.

Магнитные материалы

Магнитотвердые материалы применяются в основном для изготовления постоянных магнитов многих устройств в электро- и радиотехнике, автоматике, приборостроении, электронике.

Магнитомягкие ферриты - химические соединения окисла железа Fe2O3 с окислами других металлов. Наиболее широко применяются ферриты со структурой шпинели, отвечающими формуле MeFe2O4, где Me - какой-либо двухвалентный катион.

Пермаллои- железоникелевые сплавы с высокой проницаемостью в слабых полях. По составу выделяют низконикелевые (40-50% Ni) и высоконикелевые (72-80 %Ni)).

Магнитомягкие материалы способны намагничиваться до насыщения в слабых полях, обладают высокой магнитной проницаемостью и малыми потерями на перемагничивание. Условно к магнитомягким относят материалы с Нс>800 А/м.

Технически чистое железо (низкоуглеродистая электротехническая сталь) содержит менее 0.05% углерода и минимальное количество примесей других элементов. Получается прямым восстановлением чистых руд, а также с применением электролитического или карбонильного процессов.

Материалы с цилиндрическими магнитными доменами (ЦМД), применяемые для изготовления запоминающих устройств (ЗУ). Емкость отдельного устройства (чипа) на ЦМД может составлять 105 бит. Чем меньше Нс, тем выше быстродействие ЦМД-устройства. Обычно Нс должна быть не больше 10 А/м.

Электротехнические стали - сплавы железа с 0.5-5% кремния, которые образуют с железом твердый раствор.

Электрические свойства магнитных материалов

Каждый реальный магнитный материал разделен по всему объему на множество замкнутых областей - доменов, в каждом из которых самопроизвольная намагниченность однородна и направлена по одной из осей легкой намагниченности.

Возникновение магнитных свойств у ферромагнетиков связано с их доменным строением. Домены - это области самопроизвольной намагниченности, возникающие даже в отсутствие внешнего магнитного поля, в которых магнитные моменты атомов ориентированы параллельно.

Намагниченность любого вещества в магнитном поле J можно определить как отношение суммарного магнитного момента M материала к единичному объему V:

Диамагнетики - вещества, в которых в "чистом" виде проявляется диамагнитный эффект, являющийся результатом воздействия внешнего магнитного поля на молекулярные токи.

В переменных полях площадь петли гистерезиса увеличивается за счет потерь на гистерезис Рг, потерь на вихревые токи Рв и дополнительных потерь Рд. Такая петля называется динамической, а суммарные потери полными или суммарными.

В технике используется несколько десятков видов магнитной проницаемости в зависимости от конкретных применений магнитного материала.

Если образец был размагничен, то зависимость индукции от напряженности внешнего магнитного поля называется кривой намагничивания.

Вернуться на Главную